DEVELOPMENT PROGRAMS TRANSFORMATION BIT OF SEQUENCES
Language PASCAL has no the built in functions processing bit sequences, that considerably limits opportunities his use in a number of appendices. Thus it is necessary to note, that use other language of a high level will not facilitate a problem of processing bit files at the information. The most simple decision of a problem is the spelling some subroutines on the assembler, functions carrying out a necessary circle.
The reference to object-oriented programming allows to relieve the programmer necessity of manual distribution memory for bit sequences, the control an output of indexes elements a bit sequence for volume of the allocated memory and other routine operations.

For access to bit sequences in a file object TBitFile received by a static way of inheritance from object TStr_Bit is formed, and on the functions is similar to object TBufStream. buffering data exchange it was necessary to refuse standard methods for maintenance:

· The accelerated formation a bit line;
· Exceptions superfluous transfers of the initial data.
Internal representation a sequence bits in a field of the data object coincides with formats storage integers and is submitted in figure 1. Numbers bits may accept values from 0 up to 65520 (16 digit version) or from 0 up to 524287 (32 digit version).

1 bytes
2 bytes
3 bytes
_

7
6
5
4
3
2
1
0
15
14
13
12
11
10
9
8
23
22
21
20
19
18
17
16
_

а) The order of an arrangement bits in data file
7
6
5
4
3
2
1
0

Younger byte (L)

б) The order an arrangement bits in 8 digit register operative memory.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

The senior byte (H)
Younger byte (L)

в) The order an arrangement bits in 16 digit register operative memory.
Fig. 1. A format internal representation a bit of sequence
All incapsulating functions can be four basic types (table 1) which is carrying out:
· Initialization of object;
· Transformation of formats of the data:
1. From a bit variable in other types data;
2. Other types data in a bit variable.
· Performance mathematical operations with bit variables;
· Performance record bit variables in file.
Names of all procedures and functions are as much as possible approached to designations of the appropriate procedures and functions of processing of symbolical lines.

Table 1.Brief description carried out functions and procedures

P/P
Carried out operation
The name of the subroutine, the version of library

16 digit
32 digit

Initialization bit variable

1.
Allocation memory for bit variable
Init
Create

2.
Removal bit variable
Done
Destroy

3.
Opening file for performance bit operations
OpenBitFile

4.
Closing file
CloseBitFile

5.
Change about following bits inside bytes at performance file operations.
ChangeOrderBit

Transformation formats data

6.
Installation bit variable in the conditions determined in the line symbols
Init_Sim

7.
Installation of a bit variable in the conditions determined by a file of the bit data (packing of the data)
Init_Mas

8.
Installation of a bit variable by copying of the data from a file
Init_array

9.
Installation bit variable in "1"
Init_1

10.
Installation bit variable in "0"
Init_0

11.
Transformation bit variable in symbolical
Val_sim

12.
Transformation bit variable to file bit data (unpacking of the data)
Val_Mas

13.
Copying the data from a bit variable in data file
Val_array

Mathematical operations above bit sequences

14.
Installation a bit of a variable in "1" or "0"
PutBit
[_] 1

15.
Reception value bit of variable
GetBit
[_] 1

16.
Inverting a bit of variable
InvBit

17.
Performance group boolean operations
Bool_op
BOOL

18.
Inverting a sequence of bits
InvStrBit

19.
Merge bit sequences
Concat

20.
Allocation bit understrings
Copy

21.
Search bit understrings
Pos

22.
Insert bit understrings
Insert

23.
Removal bit understring
Delete

24.
Replacement bit understring
Replace

25.
Representation bit understring in a decimal kind
Nomer

26.
Calculation quantity"1'' bits in a variable
Kol_ed

27.
Length a bit variable
Length
Size

28.
Position of the first nonzero a bit

OpenBit

29.
Generation PSP
GenPsp_n, GenPsp_p

30.
Modelling summation on removals of the register
ModReg

31.
Addition of two bit strings on the module 2
Mod2

File operations

32.
The size of file
SizeOfFile

33.
Installation a position of the beginning reading understring from a file
SeekStr

34.
Consecutive reading understring
ReadStr

35.
Consecutive record understring
WriteStr

36.
Number of the current bit position in a file
NomTekBi

The note 1. In 32 digit version representation a bit of sequence as an one-dimensional file bits is provided.
Differences in names of some the subroutines given in the table for 16 and 32 digit versions reflect distinction of their functionalities. The basic distinction consists in strategy of distribution of memory. In 16 the digit version static distribution of memory is used, that is inside object the area of memory appropriate to the greatest possible length of a bit sequence is allocated. In 32 digit versions dynamic change allocated memory size is carried out at change length processable sequence of bits (if necessary).
Check of serviceability of the developed subroutines for compilers Turbo Pascal of versions 6.0, 7.0 and Delphi 1.0 (16 digit version), and Delphi versions 2.0, 3.0, 3.1, 3.2, 4.0, 5.0, 6.0, 7.0 (32 digit version) was carried out
As the majority of operations for versions of libraries coincides, the description work procedures and functions we shall result in common for 32 and 16 digit versions.
Features realization 16 digit version
All assemblers subroutines and functions use commands only the processor 8088 that allows to use offered library on anyone IBM compatible computers.
Numbers bits in file sequence bits (a bit variable) are set to variable in format WORD (16 without a mark), values from 0 up to 65520 may accept the digit whole.

The control indexes and dimensions of bit variables is carried out at translation module with an option{$R +},thus, in case occurrence discrepancies, change condition constant Error_Str bit is made, and necessary correction parameters operation is carried out. Further correct performance operations does not null a condition constant Error_Str_bit. It allows to define correctness performance all bit operations at the end work of the program and, if necessary, to find place mistake a method of trace.

Attention! At translation module with an option {$R -} control an output number processable bit for borders distributed memory is not made, that may result in mistakes in work program, however in this case speed work great programs a little raises.
For acceleration data exchange with the store, at processing bit files, it is recommended to choose the size buffer multiple 512 bits. The maximal size buffer should not exceed 7680 bytes (in case attempt task of buffer greater size his size decreases up to the specified size, that is connected to features of realization data transmission from the buffer in area given by a bit variable). The greatest speed record is reached at the size buffer multiple to the size clasters the store of information (512, 1024,on the size a logic disk store).
Attention! Without fail do not overlook to close before end the program processable files with the help function CloseBitFile. At non-observance this rule loss the data in processable files is possible.

Functions processing of operations a bit exchange with files return a code determining success performance operation which may accept the following values as result:

· btOk - there were no mistakes;
· btGran - attempt of an outputfor the top border of a line;
· btNeop - attempt to send uncertain bits;
· btDlst - the line of operation is longer than the current line;
· btNevReg - incorrect inquiry;
· btOchBB - the Mistake at rewriteing the Input conclusion of the data;
· btErrOtkr - the Mistake at opening a bit file;
· btEndFile - the End of the data in a file.
The object a bit variable made out as the module, is given in a file strbit16.pas (files are in addition necessary for compilation the module: Psp_8, Psp_32. Order bit which are applied in objective and assembler at kind). The control program showing an integrated example of use offered objects and allowing to carry out the control correctness functioning, is given in a file out pass.
Features of realization 32 digit versions
A number(line) assemblers subroutines and functions uses commands 486 processors that allows to use offered library on IBM the compatible computers having the processor is not lower 486SX.
Numbers of bits in a line are set to a variable in format Integer (32 digit whole), values from 0 up to 524287 may accept (reduction of the maximal value in comparison with greatest possible is caused by use operations of group processing of the bytes providing increase of speed of processing).
For acceleration of data exchange with the store, at processing bit files, it is recommended to choose the size of the buffer multiple 4096 bit. The maximal size of the buffer should not exceed 64 Kilobytes. For simplification of the task of buffers of the big sizes variables are entered
bt8, bt16, bt32, bt64, buffers determining the size equal 8,16,32,64

To kilobytes accordingly. The greatest speed of reading is reached at the size of buffer multiple to the size claster the store of the information.

For processing the mistakes arising during data exchange with a file, the mechanism of exceptions is used. The following classes of exceptions are stipulated:

· EStrBitError - task nonexistent index bit line;
· EFileBitError - mistake initialization processing file;
· EFileBitZacr - mistake reading data.
If in the program it is necessary to make specific processing of arisen mistake it is necessary to use blocks try _exept. For example:

 Try
MyBitFile: = TbitFile. Creat (bin _btCreate, bt8);

 Exept

 EfileBitError do

 MessageDlg (> Set other name of a file mtError, [mbOk], 0);

 End;

The object made out as the module, is given in a file strbit32.pas. The control example showing an integrated example of use offered objects and allowing to carry out the control correctness functioning, it is given in project Project1.

Initialization bit variable
At initialization bit variables in 16 digit version it is necessary to define the greatest possible length of bit sequence kept in a field given bit variable. In 32 digit versions the size of a field data, selected for storage of bit sequence, changes dynamically. Refusal of dynamic change size of a field data in 16 digit versions is connected to imperfection at mechanism of distribution memory, realized in 16-digit compilers.
Attention! For 16 digit version it is recommended to minimize quantity of initialization bit variables in modules of subroutines and a maximum quantity initialization to carry out in the module in basic body of program.

Allocation memory for file bit variable
32
constructor Create;

16
constructor Init (ASizeMax: Word; Size: word);

AsizeMax - the maximal length of a line in bits.
Size - the size of the intermediate buffer for reading (record) of the data from (в) a file.

At accommodation a bit line in public section form (32 digit. version) is recommended to carry out allocation and clearing of memory at the moment creation and closings form. An example:

Uses Strbit32;
type
 TForm1 = class (TForm)
public
 Str1: TStr_Bit;
 end;
procedure TForm1. FormCreate (Sender: TObject);
begin
 Str1: = TStr_Bit. Create;
end;
procedure TForm1. FormClose (Sender: TObject; var Action: TCloseAction);
begin
 Str1. Free
end;
Attention! At the task of the size buffer it is necessary, that it allowed to place not less than one bit line (Size>=AsizeMax*8)
32
Var BitStr: TBitFile; {the Announcement of variable}
begin
 BitStr: = TBitFile. Create; {Allocation of memory}
 BitStr. Free; {Clearing of memory}
End;

16
Var BitStr: PBitFile; {the Announcement of variable}
begin
BitStr: = New (PBitFile, Init (38,512)); {Allocation of memory}
Dispose (BitStr, Done); {Clearing of memory}
End;

Allocation of memory for bit variable
32
constructor Create;

16
constructor Init (AsizeMax: Word);

AsizeMax - the maximal length of a line in bits.
32
Var BitovStr: TStr_Bit; {the Announcement of variable(variable)}
begin
 BitovStr: = TStr_Bit. Create; {Allocation of memory}
 BitovStr. Free; {Clearing of memory}
End;

16
Var BitovStr: PStr_Bit; { Announcement of variable}
begin
 BitovStr: = New (PStr_Bit, Init (39)); {Allocation of memory}
 Dispose (BitovStr, Done); {Clearing of memory}
End;

Removal file bit variable
32
destructor Destroy;

16
destructor Done;

Attention! Use of an indirect call destructor, as shown in an example is recommended.
Clearing of memory is carried out irrespective of type of the created bit variable. If the program completely finishes work she(it) automatically releases(exempts) all allocated dynamic memory. Necessarily release(exempt) memory if use the bit variables declared inside procedures.
32
Var BitovStr: TStr_Bit; { Announcement of variable}
begin
 BitovStr: = TStr_Bit. Create; {Allocation of memory}
 BitovStr. Free; {Clearing of memory}
End;

16
Var BitovStr: PStr_Bit; { Announcement of variable}
begin
 BitovStr: = New (PStr_Bit, Init (38)); {Allocation of memory}
 Dispose (BitovStr, Done); {Clearing of memory}
End;

Opening of a file for performance of bit operations
32
procedure OpenBitFile (Name: string; Mode: word; BufSize: Integer);

16
function OpenBitFile (Name: string; Mode: word):word;

Name - a name of file with which operations an exchange will be made;
Mode - a mode opening f a file. The task of two modes is possible:

· btCreate - the bit variable is connected to record in a file. The consecutive conclusion of the data is possible only.
· btOpenRead - the bit variable is connected to reading from a file. Direct and consecutive access to the bit data is possible.
BufSize - the size of the intermediate buffer for data reading from a file. (details are described in item realizations various)

Procedure carries out opening a file and initialization of buffers for copying an exchange of the bit data with a file. After performance of procedure opening file representation the bit data in a file corresponds to the formats given in figure 1.

Attention! In a file open for reading, it is impossible to carry out data recording. The opposite also is fairly: from a file open for record, it is impossible to count the data.

32
Var BitStr: TBitFile; { Announcement of variable}
_

BitStr: = TBitFile. Create; {Allocation of memory}
Try

 BitStr. OpenBitFile ('a.d', btOpenRead, bt8); {Opening of a file «a.d»}
{Data processing of a file}
Exept on EfileBitError do {Performance at a mistake of opening of a file}
ShowMessage (File is not found){Conclusion the message on a mistake}
BitStr. CloseBitFile; {Closing a processable file}
BitStr. Free; {Clearing memory}

16
Var BitStr: PBitFile; { Announcement of variable}
_

BitStr: = New (PBitFile, Init (38,512)); {Allocation of memory}
if BitStr ^. OpenBitFile ('aa', btCreate) btOk {Opening file «aa»}
ThenWriteln (Mistake creation a file); { Conclusion message}
_ {Data processing of a file}
BitStr CloseBitFile; {Closing of a processable file}
Dispose (BitStr, Done); {Clearing of memory}

Closing file
32
procedure CloseBitFile;

16
function CloseBitFile:word;

The note. If your program does not process a code of end function of closing of a file can be caused as procedure.
32
Var BitStr: TBitFile; {the Announcement of variable(variable)}
_

BitStr: = TBitFile. Create; {Allocation of memory}
Try

 BitStr. OpenBitFile ('a.d', btCreate, bt16); {Opening of a file «a.d»}
_ {Data processing of a file}
 BitStr. CloseBitFile; {Closing of a processable file}
Exept on EFileBitZacr do {Performance at a mistake of opening of a file}
 ShowMessage (Loss of data); { Conclusion of message on mistake}
BitStr. Free; {Clearing of memory}

16
Var BitStr: PBitFile; {Announcement of variable}
_

BitStr: = New (PbitFile, Init (38,512)); {Allocation of memory}
BitStr ^. OpenBitFile ('aa', btCreate); {Opening of a file «aa»}
_ {Data processing of a file}
if BitStr ^. CloseBitFile < > btoc {Closing of a processable file}
 ThenWriteln (Loss of data); { Conclusion of message}
Dispose (BitStr, Done); {Clearing of memory}

Change about following bits inside bits.
32
procedure ChangeOrderBit;

16
procedure ChangeOrderBit;

Procedure changes the order of following of bits inside baits (figure 2) at performance of operations of reading or record in a file. Procedure should be caused right after opening of a file. The standard order of following (figure 1) is established at opening a file. To return the order of following of bits in a standard condition a repeated call of procedure it is impossible.
32
Var BitStr: TBitFile; { Announcement of variable}
BitStr: = TBitFile. Create; {Allocation of memory}
BitStr. OpenBitFile ('a.d', btCreate, bt16); {Opening of a file «a.d»}
BitStr. ChangeOrderBit; {Change about following bits in bytes}

BitStr. CloseBitFile; {Closing of a processable file}
BitStr. Free; {Clearing of memory}

16
Var BitStr: PBitFile; { Announcement variable}
_

BitStr: = New (PBitFile, Init (38,512)); {Allocation memory}
BitStr ^. OpenBitFile ('aa', btCreate); {Opening file «aa»}
BitStr ^. ChangeOrderBit; {Change about following bits in bytes.
BitStr ^. CloseBitFile; {Closing of a processable file}
Dispose (BitStr, Done); {Clearing of memory}

1 bytes
2 bytes
3 bytes
_

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
_

Figure 2. The order an arrangement bits in data file of file
Transformation formats data
All procedures and functions given group may be applied both to a bit variable, and to file bit variable received by a static way inheritance from a bit variable. For reduction of examples all of them will be given concerning a bit variable.
Installation bits variable in the conditions determined in line symbols.
32
procedure Init_Sim (Ust:string);

16
procedure Init_Sim (Ust:string);

Ust - a line containing _1_ and _0_ symbols.
Procedure establishes elements a field given to a bit variable in the conditions determined in the line symbols. The length bit variable becomes to equal length symbolical line Ust.

If installation values in a file bits the symbols which are distinct from recommended (_1_ will be used and _0 _) the message on a mistake will not be produced, and for installation values file the younger category used symbols will be taken into account.

The example of the task of a bit sequence, in the length of 5 bits, is given in the table:

32
Var BitStr: TStr_Bit; {the Announcement of variable}
Begin
 BitStr: = TStr_Bit. Create; {Allocation of memory}
 BitStr. Init_Sim (> 10110 _); {Installation of values of bits of variable(variable)}

 BitStr. Free; {Clearing of memory}
End.

16
Var BitStr: PStr_Bit; {the Announcement of variable(variable)}
Begin
 BitStr: = New (PStr_Bit, Init (38,512)); {Allocation of memory}
 BitStr ^. Init_Sim (> 10110 _); {Installation of values of bits of variable}
 Dispose (BitStr, Done); {Clearing of memory}
End.

Installation bits of variable in the conditions determined by a file of byte in bit data (packing of the data)
32
procedure Init_Mas (Kol: Integer; var Mas);

16
procedure Init_Mas (var Mas; Kol: word);

Kol - quantity installed elements of bit variable.
Mas - variable type an one-dimensional file of byte.

Procedure establishes Kol bits of a line in the conditions determined by file Mas which each byte contains bt1 or bt0 (the bit alphabet).

Transformation file containing any data is supposed, in this case for installation values in bit sequence younger category bytes a file is used. Dimension packing a file may be more, than quantity established elements of a bit variable. If in a file the quantity byte smaller Kol end of bit sequence will contain casual sequence of bits is determined.

The example of the task of a bit sequence kind six bits is given by length in the table:

32
Const Mzn: array [1. 8] of byte = (0,0,1,1,1,1,1,0);
Var BitStr: TStr_Bit; {Announcement of variable}
Begin
 BitStr: = TStr_Bit. Create; {Allocation of memory}
 BitStr. Init_Mas (6, Mzn); {Installation values of 6 bits variable}
BitStr. Free; {Clearing memory}
End.

16
Const Mzn: array [1. 8] of byte = (0,0,1,1,1,1,1,0);
Var BitStr: PStr_Bit; { Announcement of variable}
Begin
 BitStr: = New (PStr_Bit, Init (3208,512)); {Allocation of memory}
 BitStr Init_Mas (Mzn, 6); {Installation values of 6 bits variable}
 Dispose (BitStr, Done); {Clearing memory}
End.

Installation bits variable by copying data from a file.
32
procedure Init_array (var Ust; Kol: Integer);

16
procedure Init_array (var Ust; Kol: word);

Kol - quantity of established elements bit variable;
Ust - a variable of any type.

Procedure establishes bits line in the conditions determined by variable Ust by a method of copying Kol byte variable in dynamic memory, allocated for the bit data. The length bit line is established equal Kol*8. In 16 digit versions, if necessary, the length is limited to the size as much as possible allowable for a changeable bit variable.

Example transformation an integer variable, which size it is equal 5, in a bit sequence (1010000000000000) length of 16 bits, it is given in the table:
32
Var BitStr: TStr_Bit; Izn: word; { Announcement of variable}
Begin
 BitStr: = TStr_Bit. Create; {Allocation of memory}
 Izn: = 5;
 BitStr. Init_array (Izn, 2); {Installation values 16 bits variable}
 BitStr. Free; {Clearing of memory}
End;

16
Var BitStr: PStr_Bit; Izn: word; { Announcement of variable}
Begin
 BitStr: = New (PStr_Bit, Init (38,512)); {Allocation of memory}
 Izn: = 5;
 BitStr ^. Init_array (Izn, 2); {Installation values 16 bits variable}
 Dispose (BitStr, Done); {Clearing memory}
End;

Installation bits variable in condition.
32
Procedure Init_1 (Razm: Integer);

16
Procedure Init_1;

Razm - quantity(amount) of established(installed) elements of a bit variable.
In 32 digit version installation of the current size of a line and record in all elements of a bit file î1ï bits is carried out. In 16òè the digit version installation of the current length of the variable equal to the greatest possible length of a variable then record in all elements of a bit file bits is carried out is carried out.

The example of creation of a bit sequence from 306 bits is given in the table.

32
Var BitStr: TStr_Bit; { Announcement of variable}
Begin
 BitStr: = TStr_Bit. Create; {Allocation of memory}
 BitStr. Init_1 (306); {Installation values bits of variable}
 BitStr. Free; {Clearing memory}
End;

16
Var BitStr: PStr_Bit; { Announcement of variable}
Begin
 BitStr: = New (PStr_Bit, Init (306,512)); {Allocation of memory}
 BitStr ^. Init_1; {Installation values bits of variable}
 Dispose (BitStr, Done); {Clearing memory}
End;

Installation bits of variable in condition
32
Procedure Init_0 (Razm: Integer);

16
Procedure Init_0;

Razm - quantity of installed elements bit variable.
In 32 digit version installation current size of line and record in all elements of bit file bits is carried out. In 16 digit version installation of current length variable equal to greatest possible length of variable then record in all elements bit file bits is carried out is carried out.

The example creation bit sequence from 203 bits is given in the table.
32
Var BitStr: TStr_Bit; { Announcement variable}
Begin
 BitStr: = TStr_Bit. Create; {Allocation memory}
 BitStr. Init_0 (203); {Installation values bits variable}
 BitStr. Free; {Clearing memory}
End;

16
Var BitStr: PStr_Bit; { Announcement of variable}
Begin
 BitStr: = New (PStr_Bit, Init (203,512)); {Allocation of memory}
 BitStr ^. Init_0; {Installation values bits of variable}
 Dispose (BitStr, Done); {Clearing of memory}
End;

Transformation bit variable to a symbolical line
32
function Val_sim: string;

16
function Val_sim (Kol:byte): string;

Kol - quantity change elements bit of variable.
Function will transform the first KOL bits line to the line symbols containing symbols kind '1' or '0', and gives out her as result transformation. In 32 digit versions the maximum quantity retranslate does not exceed bits 255. In 16 the digit version if the length bit variable is less than value KOL the resulting symbolical line will contain the quantity of symbols equal to length bit variable.

The example transformation bit sequence in a symbolical line with the purpose conclusion value to the screen is given the table:

32
Var BitStr: TStr_Bit; { Announcement of variable}
_
Label1. Caption: = BitStr. Val_Sim; {Indication values bits}
_

16
Var BitStr: PStr_Bit; { Announcement of variable}
_
Writeln (BitStr Val_Sim (26)); {Listing bit variable}
_

Transformation bit variable to file of byte in bit data (unpacking of the data)
32
Function Val_Mas (Kol: Integer; var MasBt): Integer;

16
Function Val_Mas (var Mas; Kol: word): word;

Kol - quantity(amount) преобразуемых elements of a bit variable.
Mas - a variable of type an one-dimensional file of byte.

Function establishes Kol byte of file Mas in conditions bt1 or bt0, determined (transformation to the unpacked variant) the quantity(amount) of the redefined elements of a file is given out by a bit variable as result of function. If the length of a bit variable is less than value KOL in a resulting file the quantity of elements equal to length of a bit variable will be redefined.

As a result of performance of the example given in the table, variable J may accept value from 0 up to 20 (on current length of bit variable) and the first J the byte of file will be established in conditions bt1 or bt0. If bit variable is longer than 20 bits only the first 20 bytes of file all the same will be established.

32
Var J: integer; BitStr: TStr_bit;
 M: array [1. 20] of byte; { Announcement of variable}
J: = BitStr. Val_Mas (M, SizeOf (M)); { Finding Elements of file}

16
Var J: word; BitStr: PStr_bit;
 M: array [1. 20] of byte; { Announcement of variable}
J: = BitStr ^. Val_Mas (M, SizeOf (M)); { Finding Elements of file}

Copying data from bit variable in data file
32
Procedure Val_array (var Mas; Kol: Integer);

16
procedure Val_array (var Mas; Kol: word);

Kol - quantity copied bytes of bit variable;
Mas - an any variable.
Procedure sends the first Kol byte of a bit line to file Mass. If the current length of a line does not allow to send Kol byte the missing data are supplemented with zero, and transfer is carried out.

Transfer can be carried out in any type of a variable integer word long that allows to establish in these variable necessary values bit configurations.

The example transformation bit sequence in an integer variable is given in the table:

32
Var i: integer; BitStr: TStr_bit; {Announcement of variable}
BitStr. Init_Sim (> 101 _)
i: = BitStr. Val_array (Size of installation 0 and 2 bit among (5))

16
Var i: word; BitStr: PStr_bit; { Announcement of variable}
BitStr ^. Init_Sim (> 101 _)
i: = BitStr ^. Val_array (Size of installation 0 and 2 bit among (5))

Mathematical operations above bit variables
All procedures and functions given group may be applied both to a bit variable, and to the file bit variable received by a static way inheritance from a bit variable. For reduction examples all of them will be given concerning a bit variable. All mathematical operations are carried out with the packed internal data presentation (8 bits in bits), that allows two speed up performance of operations considerably.
In 16 digit versions the length bit sequence variable is limited to the maximal length given at initialization, occurrence situation when as a result of performance mathematical operation there will be truncation length resulting bit sequence therefore is possible. Installation global variable Error_Str_bit in one following conditions in this case is made:

· btGran - an output for the top border variable;
· btNeop - inquiry about transfer uncertain bits.
Installation bit line in condition bt1 or bt0
32
[Nach]

16
Procedure PutBit (Nach:word; Zn: byte);

Nach - a position a bit in a bit line (0 a bit variable).
Zn - value a bit (bt1 or bt0).
Changes value a bit of the variable, worth on positions Nach to value Zn. (Bits on the given position should be determined, i.e. value Nach is less than or equal to length of a bit variable).
For example, the variable contains a bit sequence of a kind (110100000). After installation of value 6-th bit in 1 variable will contain (110100100). The example of installation of value the sixth bit of a bit sequence in a condition '1' is given in the table:

32
Var BitStr: TStr_bit; {the Announcement of variable(variable)}
_
BitStr [6]: = bt1; {Installation of value 6-th bit}
_

16
Var BitStr: PStr_bit; {the Announcement of variable(variable)}
_
BitStr ^. PutBit (6, bt1); {Installation of value 6-th bit}
_

Reception of value a bit of a variable
32
[Nach]

16
Function GetBit (Nach:word): byte;

Nach - a position a bit in a bit line (0_äëèíà a bit variable).
Value a bit of the variable, worth on position Nach. (Bits on the given position should be determined, i.e. value Nach is less than length of a bit variable) comes back.

For example, the variable contains a bit sequence of a kind (110100000). Value 3-rd bit equally bt1 (1). The example of reading of value the third bit of a bit sequence is given in the table:

32
Var BitStr: TStr_bit; Zn: byte; { Announcement of variable}
Zn: = BitStr [3]; {Reception of value 3-rd bit}

16
Var BitStr: PStr_bit; { Announcement of variable}
Zn: = BitStr ^. GetBit (6); {Reception of value 3-rd bit}

Inverting of value a bit.
32
Procedure InvBit (Index: Integer);

16
Procedure InvBit (Index: word);

Index - a position a bit in a bit line (0 a bit variable).
Procedure inverts value a bit of the variable, worth on positions index. (Bits on the given position should be determined. value Index is less than length of a bit variable).

For example, the variable contains a bit sequence of a kind (110100000). After inverting value 0-th bit the variable will contain (010100000). The example of inverting of value zero a bit of a bit sequence is given in the table:

32
Var BitStr: TStr_bit; { Announcement of variable}
BitStr. InvBit (0); {Inverting value of 0 bit}
_

16
Var BitStr: PStr_bit; { Announcement of variable}
BitStr ^. InvBit (0); {Inverting value of 0 bit}
_

Performance group steal operations
32
procedure BOOL (Dopoln: TStr_Bit; Vid_op: Byte);

16
procedure Bool_op (StrBaz, Dop: PStr_bit; Index, Vid_op: word);

Dopoln - a bit variable of addition;
Dop - an additional line for performance operations;
StrBaz - an initial line for performance operations;

Index - a position a bit in variable StrBaz

Procedure carries out transformations according to rules algebras, given in parameter Vid_op. If wrong value of parameter Vid_op addition bit sequences on the module 2 is carried out is given.

Carried out operations and values parameter Vid_op:
The name of operation
Value Vid_op
Definition of operation

0
0
1
1

0
1
0
1

Logic multiplication
btAND
0
0
0
1

Addition on the module 2
btXOR
0
1
1
0

оИЛИп - logic addition
btOR
0
1
1
1

Work of procedure differs in 32 and 16-x digit versions of libraries, therefore we shall result the separate description. The essence of distinction consists that in 16-òè the digit version preliminary shift of the beginning of an additional sequence concerning base is carried out, and then performance of operation, thus both bit sequences do not change. In 32 digit versions of shift it is failed and the base sequence changes, as she(it) is stored(kept) in a bit variable of result of operation.
32 DIGIT VERSION
Procedure carries out logic operations with two bit sequences according to rules boolean algebra, given in parameter Vid_op, and the current variable simultaneously stores, both one of retranslating sequences of bits, and result of transformation. After performance operations the length of a bit variable may decrease, as the length of a resulting sequence bytes is equal to the minimal length retranslating sequences (finishing bits of longer sequence are rejected).
16 DIGIT VERSION
StrBaz

Dop

Result of transformation

Figure 3. - the Principle of work of subroutine Bool_op
The principle of functioning 16 explains the bit version of procedure figure 3. In it(her) it is carried out of transformation of a sequence of bits of variable StrBaz, since position Index, and bit sequence Dop. The result of transformation enters the name in the current bit variable.
For example, variable StrBaz (BitStr) contains a bit sequence of a kind (110100011100100), and variable Dop (Dopoln) - (010101000). After performance of operation of addition on the module 2 (for an example given in the table) current line BitStr will contain a bit sequence kind:
· For 32 digit version - (100001011)
· For 16 digit version - (000100110)
After performance of operation of logic addition (for an example given in the table) current line BitStr will contain a bit sequence of a kind:
· For 32 digit versions - (110101011).Is taken into account.
For 16 digit versions - (110)
Pay attention, that there is no change bit sequences in the variables transmitted as parameter.

32
Var BitStr, Dopoln: TStr_bit; { Announcement of variable}
_
BitStr. BOOL (Dopoln, btXOR); {Addition on the module 2}
BitStr. BOOL (Dopoln, btOR); {Logic addition}

_

16
Var BitStr, StrBaz, Dop: PStr_bit; { Announcement of variable}
BitStr Bool_op (StrBaz, Dop, 2, btXOR); {Addition on the module 2}
BitStr ^. Bool_op (StrBaz, Dop, 12, btOR); {Logic addition}

_

Inverting bit sequences
32
procedure Concat (Dopoln: TStr_Bit);

16
procedure Concat (Dopoln: PStr_bit);

Dopoln - bit variable of addition;
Procedure finishes a bit sequence variable addition in the end bit sequence current variable.

For example, variable BitStr contains a bit sequence of a kind (110100000), variable Dopoln - (1110000). After performance procedure (for an example given in the table) variable BitStr will contain a bit sequence kind (1101000001110000).

32
Var BitStr, Dopoln: TStr_bit; { Announcement of variable}
BitStr. Concat (Dopoln); {Merge of bit sequences}

16
Var BitStr, Dop: PStr_bit; { Announcement of variable}
BitStr ^. Concat (Dop); {Merge bit sequences}

Inverting bit sequence
32
procedure InvStrBit;

16
procedure InvStrBit;

Procedure inverts a bit sequence. Everyone "1" becomes "0" and on the contrary.

For example, variable BitStr contains a bit sequence kind (110100000). After performance procedure (for an example given in the table) variable BitStr will contain bit sequence kind (001011111).
32
Var BitStr, Dopoln: TStr_bit; {the Announcement of variable(variable)}
_
BitStr. InvStrBit; {Inverting of a bit sequence}
_

16
Var BitStr, Dop: PStr_bit; {the Announcement of variable(variable)}
_
BitStr ^. InvStrBit; {Inverting of a bit sequence}
_

Allocation of a bit sequence
32
procedure Copy (Isx: TStr_Bit; Index, Count: Integer);

16
procedure Copy (Isx: PStr_bit; Index, Count: word);

Index - a position a bit in a bit line (0 a bit variable);

Count - the size of a selected bit sequence;
Isx - an initial bit variable.

Procedure copies in current variable Count of bits from position Index from bit variable Isx.
For example, variable Isx contains a bit sequence of a kind (110100000111001100). After performance of procedure of allocation of a sequence of bits in length 5, since a bit 3 (for an example given in the table), variable BitStr will contain a bit sequence of a kind (10000).
32
Var BitStr, Isx: TStr_bit; {the Announcement of variable(variable)}
_
BitStr. Copy (Isx, 3, 5); {Allocation of a bit sequence}
_

16
Var BitStr, Isx: PStr_bit; {the Announcement of variable(variable)}
_
BitStr ^. Copy (Isx, 3, 5); {Allocation of bit sequence}
_

Search bit understrings
32
function Pos (SubS: TStr_Bit; Nach, Shag: Integer): Integer;

16
function Pos (SubS: PStr_bit; Nach, Shag: word): word;

Nfch - a position a bit in a bit line with which search of the given sequence of bits (0_äëèíà a bit variable) begins;
Step - a step displacement by search given sequence bits (1 a bit variable);

SubS - sets a sequence bits for search.

Function returns a position bits since which in the current sequence bits the sequence given by variable SubS (its length is located should be less length of the current variable). Search begins with bit Nach, thus all subsequent comparisons bit sequences are carried out with shift bit sequence SubS concerning an initial line with step bits. If searched bit sequence is not found, function returns value btNotFound.
For example, variable BitStr contains bit sequence kind (11010000011100001100). After performance search sequence bits SubS (1000), (for an example given in table),
Carried out in cycle, the following positions will be found: 3, 11, btNotFound.

Attention! For acceleration operations search certain sequences bits it is possible to set a step shift more unit (for example, in a problem of search of some combination bits in synchronous transfer), however not all concurrences in this case will be found. If for an example given in the table to set a step shift equal to five it will not be found any concurrence
32
Var BitStr, Isx: TStr_bit; {Announcement of variable}
…
Nach: = 0; SubS.Init_sim ('1000'; {search combination of bits}
With BitStr do repeat {a kind "1000"}
Nach: = Pos (SubS, Nach, 1); {finding positions}
ShowMessage (IntToStr (Nach));

if Nach < > btNotFound then inc (Nach)

until Nach = btNotFound;

16
Var BitStr, SubS: PStr_bit; { Announcement of variable}
…
Nach: = 0; SubS ^. Init_sim ('1000'; {search of a combination of bits}
With BitStr^ do repeat {a kind "1000"}
Nach: = Pos (SubS, Nach, 1); {finding positions}
Write (Nach:10);

if Nach < > btNotFound then inc (Nach)

until Nach = btNotFound;

Insert bit understrings
32
procedure Insert (Dop: TStr_Bit; Index: Integer);

16
procedure Insert (Dop: PStr_bit; Index: word);

Index - a position a bit in a bit line (0 a bit variable);
Dop - an added bit variable.

Procedure carries out an insert of bit sequence Dop in the current variable, since position Index.
For example, variable BitStr contains a bit sequence of a kind (110100000111). After performance of an insert of a sequence of bits
Dop (1101), since a bit 4 (for an example given in the table), variable BitStr will contain a bit sequence of a kind (1101110100000111).
32
Var BitStr, Dop: TStr_bit; {the Announcement of variable(variable)}
_
BitStr. Insert (Dop, 4); {the Insert of a bit sequence}
_

16
Var BitStr, Dop: PStr_bit; {the Announcement of variable(variable)}
_
BitStr ^. Insert (Dop, 4); {the Insert of a bit sequence}
_

Removal bit understrings
32
procedure Delete (Index, Count: Integer);

16
procedure Delete (Index, Count: word);

Index - a position a bit in a bit line (0 a bit variable);
Count - the size delete a bit sequence.

Procedure deletes in current variable Count of bits from position Index.
For example, variable BitStr contains a bit sequence of a kind (1101111100111001100). After performance of procedure of removal(distance) of a sequence of bits in length 5, since the third bit (for an example given in the table), variable BitStr will contain a bit sequence of a kind (11000111001100).

32
Var BitStr: TStr_bit; { Announcement of variable}
BitStr. Delete (3, 5); {Removal of a sequence of bits}

16
Var BitStr: PStr_bit; { Announcement of variable}
BitStr ^. Delete (3, 5); {Removal sequence of bits}

Replacement bit understrings
32
procedure Replace (Dop: TStr_Bit; Index: Integer);

16
procedure Replace (Dop: PStr_Bit; Index: word);

Index - a position a bit in a bit line (0 bit variable);
Dop - the bit variable containing a sequence of bits for replacement of values.

Procedure carries out replacement bits current variable, since position index, on bits of variable Dopoln.
In a case when the bits of variable Dop replacing bits current variable leave for its length the increase length current variable (in 16 digit version increase length is carried out is limited to the maximal value set at initialization object).
For example, variable BitStr contains a bit sequence kind (110100000111). After performance replacement bit understring on a sequence bits Dop (0010101001), since bit 9 (for an example given in the table), variable BitStr will contain bit sequence kind (1101000000010101001).

32
Var BitStr, Dop: TStr_bit; { Announcement variable}
BitStr. Replase (Dop, 9); { Insert bit sequence}

16
Var BitStr, Dop: PStr_bit; { Announcement of variable}
BitStr ^. Replase (Dop, 9); { Insert bit sequence}

Representation bit understrings in decimal kind
32
function Nomer (Nach: Integer; Dln: byte): Integer;

16
function Nomer (Nach: word; Dln: byte): word;

Nach - a position a bit in a bit line (0 bit variable);
Dln - the size retranslating bit sequence.

Function allocates group bits in length Dln sequence bits with bit Nach. The result represents an integer variable in which are filled Dln younger bits.

For example, variable BitStr contains bit sequence kind (1101000000111001100). After performance first call (for an example given in the table) value of variable J it will be equal 1, and after the second - to four.
32
Var BitStr: TStr_bit; J: Integer; { Announcement of variable}
J: = BitStr. Nomer (3, 5); {Decimal value of Bits}
J: = BitStr. Nomer (8, 3); {Decimal value of Bits}

_

16
Var BitStr: PStr_bit; J: Word; { Announcement of variable}
_
J: = BitStr ^. Nomer (3, 5); {Decimal value of Bits}
J: = BitStr ^. Nomer (8, 3); {Decimal value of Bits}

_

Calculation quantity in sequence bits
32
function Kol_ed: Integer;

16
function Kol_ed: word;

Function returns quantity(amount), contained in a bit sequence.
For example, variable BitStr contains a bit sequence of a kind (1101000000111001100). After performance (for an example given in the table) value of function it will be equal 8.
32
Var BitStr: TStr_bit; J: Integer; { Announcement of variable}
J: = BitStr. Kol_ed; {Quantity(amount) _1_ bits}

16
Var BitStr: PStr_bit; J: Word; {the Announcement of variable(variable)}
J: = BitStr ^. Kol_ed; {Quantity(amount) _1_ bits}

Delete bit sequence
32
Size: Integer;

16
function Length: word;

Function returns quantity of bits contained in a bit sequence.
Attention! For 32 digit versions value length of variable is determined as property.

For example, variable BitStr contains bit sequence kind (11010001100). After performance (for an example given in the table) value variable J it will be equal 11.
32
Var BitStr: TStr_bit; J: Integer; {Announcement of variable}
J: = BitStr. Size; {Quantity(amount) of bits}

16
Var BitStr: PStr_bit; J: Word; { Announcement of variable}
J: = BitStr ^. Length; {Quantity bits}

Position first nonzero bit
32
function OpenBit: Integer;

16

Function returns position first bit bit sequence.
Attention! Exists only in 32 digit versions. It is entered with the purpose compatibility with class Delphi Tbit.
For example, variable BitStr contains bit sequence kind (00010001100). After performance (for an example given in the table) value variable J it will be equal 3.

32
Var BitStr: TStr_bit; J: Integer; {Announcement of variable}
J: = BitStr.OpenBit; { Position first nonzero bit}

16

Generation of M-sequences.
32

16
procedure GenPsp_n (Pol, Ust: PStr_bit; Kol: word);
procedure GenPsp_p (Kol: word);

Kol - quantity generated bits M-sequence.
Pol - a polynom M-sequence.

Ust - initial installation (combination from which M-sequence will begin)

Procedure GenPsp_n carries out generation Kol of bits Psp. The maximal degree polynom. Psp is equal 32. Initial installation Ust and kind polynom Pol are set as bit sequences, thus zero tap polynom is not entered. Degrees polynom correspond individual to bits in a bit sequence, and the position bit on unit is less than degree of tap(removal) of a polynom (numbering of bits begins with 0).
Procedure GenPsp_p continues process of generation Kol of bits ПСП from the interrupted value. Correct work of procedure (generation of bits of M of a sequence without change of phase ПСП with transition from one block to another) is carried out only at value Kol multiple 8, including by the first call (subroutine GenPsp_n).

Attention! Procedures exist only in 16-òè the digit version.
The example of generation of a sequence of blocks PSP with forming polynom Õ8+Õ2+1 in which the first block in length 64 bit begins with a bit sequence of a kind (11010001) is given in the table.

32

16
Var BitStr, Ust, Pol: PStr_bit; {Announcement of variable}
Ust ^. Init_Sim (> 11010001 _);
Pol ^. Init_Sim (> 01000001 _);

BitStr ^. GenPsp_n (Pol, Ust, 64); {First block PSP}
BitStr ^. GenPsp_p (128); {Second block PSP}

_

Modelling summation on taps register.
32

16
function ModReg (VidReg: PStr_bit; Nbis: word): byte;

VidReg - a bit mask of the register;
Nbis - number a bit with which imposing a bit mask begins.

Function models summation on the module 2 on taps(removals) of the register given î1ï by bits of variable VidReg. Summation begins with bit Nbis in the current bit variable. Function returns result of summation which may accept values bt1 or bt0.
Attention! Function exists only in 16 digit version.

The example of calculation syndrome a code (1338,1778) is given in the table. The bit sequence of the coded data is stored in variable BitStr.
32

16
Var BitStr, Sindr: PStr_bit; J: Integer; { Announcement of variable}
Sindr ^. Init_sim ('11100011110111';

For J: = 0 to ((BitStr ^. Length – Sindr ^. Length-1) div 2) do

 Write (BitStr ^. ModReg (Sindr, J*2)); { Seal calculated value}

Addition two sequences bits on the module 2.
32

16
procedure Mod2 (Dop: PStr_bit);

Dop - an additional bit sequence.
Procedure carries out addition on the module of 2 two bit sequences current and additional Dop. The result of addition enters the name in the current bit variable. The length of the current bit variable is established equal minimal lengths of two bit variables participating in operation.

The given procedure being simplified variant procedure Bool_op, is entered for acceleration process calculations in standard situations.

Attention! Procedure exists only in 16 digit version.
The example of the differential decoder is given in the table. The bit sequence of coded data is kept in variable BitStr.
32

16
Var BitStr, Dop: PStr_bit; {Announcement of variable}
Dop ^. Copy (BitStr, 1, (BitStr ^. Length-1)); {Shift on 1 bits}
BitStr ^. Mod2 (Dop); {Addition of two sequences on mod 2}
_

File operations
All procedures and functions of the given group may be applied only to a file bit variable. The description of values of the parameters returned by functions, is given in items.
Size of file
32
Function SizeOfFile: longint;

16
Function SizeOfFile: longint;

Function returns the size of a file in bits. It may be applied to any types of files. At the reference(manipulation) to a unopened file returns value 0.
The example of a call of function is given in the table:

32
Var BitStr: TBitFile; Razmer: longint; {Announcement of variable}
 Razmer: = BitStr. SizeOfFile; {Definition of the size of a file}

16
Var BitStr: PBitFile; Razmer: longint; {Announcement of variable}
 Razmer: = BitStr ^. SizeOfFile; {Definition of the size of a file}

Installation position beginning of reading from a file sequence bits
32
Function SeekStr (Polog: longint): word;

16
Function SeekStr (Polog: longint): word;

Polog - number the first bit, read - out by function ReadStr.

Function returns a code of success of end of operation and carries out installation of the current position in a file on a bit element with number Polog.

The example of a call of function is given in the table:
32
Var BitStr: TBitFile; Razmer: longint; { Announcement of variable}
BitStr. SeekStr (20000); {Installation of a position in a file}

16
Var BitStr: PBitFile; Razmer: longint; {Announcement of variable}
BitStr ^. SeekStr (20000); {Installation of a position in a file}

Reading sequence bits from file
32
function ReadStr (Count:Integer): word;

16
function ReadStr (Count:word): word;

Count - quantity bits which were read out from a file.
Function returns a code success of end operation and fills count bits a variable bit sequence from a file. The current position a bit in a file is increased by size of quantity read out bits.
Possible returned values:

· btOk - successful end of operation;
· btNevReg - incorrect inquiry (attempt to read a file intended for record);
· btOchBB - Mistake at performance of data input; Specification mistake on IOResult.

· btEndFile - End of data in file.
The example of the organization consecutive reading cycles of transfer from a file is given in the table:
32
Var BitStr: TBitFile; {the Announcement of variable(variable)}

_
Repeat
BitStr. ReadStr (200) btok then break; {Reading 200 bits}{Processing sequence of bits}

Until (IOResult < > 0);

16
Var BitStr: PBitFile; {Announcement of variable}
Repeat
 if BitStr ^. ReadStr (200) < > btOk then break; {Reading of 200 bits}{Processing sequence of bits}

Until (IOResult < > 0);

Record sequence of bits in a file
32
function WriteStr: word;

16
Function WriteStr: word;

Function returns a code of success end of operation and writes down bits variable in the end of file. The current position a bit in a file is increased by size of quantity of the written down bits.
Possible returned values:
· btOk - successful end of operation;
· btNevReg - incorrect inquiry (attempt to write down in a file intended for reading);
· btOchBB - the Mistake at performance of data input; Specification of a mistake on IOResult.

The example of the organization of consecutive record of cycles of transfer to a file is given in the table:
32
Var BitStr: TBitFile; {Announcement of variable}
Repeat

{Processing of sequence bits}
 if BitStr. WriteStr < > btOk then break; {Record bits in a file}

Until (IOResult < > 0);

16
Var BitStr: PBitFile; {Announcement of variable}
Repeat

{Processing of sequence bits}
 if BitStr ^. WriteStr < > btok then break; {Record of bits in a file}

Until (IOResult < > 0);
_

The size of file
32

16
function NomTekBi: longint;

Function returns number the first bit of the current bit line concerning the beginning of a processable file. It may be applied to any types of files. At the reference(manipulation) to a unopened file returns value 0.
Attention! Function exists only in 16-òè the digit version.

The example of a call of function is given in the table:

32

16
Var BitStr: PBitFile; Razmer: longint; { Announcement of variable}
Razmer: = BitStr ^. NomTekBi; {Definition current position in file}

Demonstration example
The demonstration program for 16 digit version, showing an integrated example use of offered objects and allowing to carry out the control correctness functioning, is given below:
program StrBitDemo;

{ $F +, R +, X +, B +, V-}

uses StrBit16;

const

Is_dan: array [1. 3] of integer = (12, 225,-3);

Is_str: string [90] = '01011100000011111110' + '110111000101001010000';

var S1, S2, S4: PStr_Bit;

S3: PBitFile;

Rez_s: string; D1, Nach: word;

D2: Byte;

 Mrasp: array [1. 200] of byte;

begin

 Writeln (*10*13’ the program of processing of bit lines ');

 S2: = New (PStr_Bit, Init (38));

 S3: = New (PBitFile, Init (3000,512));

 Writeln (' Cyclic shift on one of bits to the left ');

 With S3 ^ do begin

 if OpenBitFile ('aa.dat', btCreate) < > btOk Then Halt (1);

 Init_array (Is_dan, SizeOf (Is_dan));

 Writeln (Val_sim (SizeOf (Rez_s)-1)); {Listing bit}

 Init_array (Is_dan, SizeOf (Is_dan))

 D2: = GetBit (0); {Cyclic shift}

 Delete (0,1);

 PutBit (Length, D2); {one of bits to the left}

 Writeln (Val_sim (80)); {Listing bit}

 end;

 Writeln (' Cyclic shift on 6 bits to the right ');

 D1: = 6;

 Writeln (Is_str);

 S1: = New (PStr_Bit, Init (3000)); {Allocation of memory for S1}

 With S1 ^ do begin

 Init_Sim (Is_Str); {Initialization of value of bits S1}

 S2 ^. Copy (S1, Length - D1, D1); {Cyclic shift}

 Delete (Length - D1, D1); { S3 on}

Insert (S2,0); {D1 bits }

Write (Val_sim (80)); {Listing bit }

 end;

Writeln (' Record of this line in a file ');

 S3 ^. Copy (S1,0, D1)

 S2 ^. Init_1;

 S3 ^. WriteStr; {Record bit in a file}

 Writeln (' Inversion of a line c truncation of length and removal(distance) of 2 first bits ');

 S4: = New (PStr_Bit, Init (156));

 S4 ^. Bool_op (S1, S2,2, btx); {Record in S4 from S1}

 {in length S2 .length in a kind}

 Write ('', S4 ^. Val_sim (80));
 Writeln (' Record of this line in a file ');

 S3 ^. Copy (S4,0, S4 ^. Length);

S3 ^. WriteStr; {Record bit in a file}

Write (' Конкатенация last with previous ');

D2: = S4 ^. Length;

S4 ^. Concat (S1)

Writeln (S4 ^. Length, '=', D2, '+', S1 ^. Length, ':');

Writeln (S4 ^. Val_sim (80)); {Listing bit files}

Writeln (' search combination bits of kind "1000" and positions ');

Nach: = 0; S1 ^. Init_sim ('1000'; {search of a combination of bits}

With S4 ^ do repeatNach: = Pos (S1, Nach,{findings positions}

Write (Nach:10);

if Nach < > btNotFound then inc (Nach)

until Nach = btNotFound;

 Writeln (*10*13'bits as a file of byte ');

 D1: = s4 ^. Val_Mas (Mrasp, sizeof (Mrasp));

 for nach: = 1 to D1 do write (Mrasp [nach]);

 Writeln;

 S3 ^. CloseBitFile;

 Writeln (Inversion by 3-rd and 14-rd bits of line bits

 s4 ^. InvBit (14);

 s4 ^. InvBit (3);

 Writeln (S4 ^. Val_sim (80)); {Listing bit}

Writeln(012345678901234567890123456789012345678 901234567890123456789 ');

 S4 ^.PutBit (17,1);

 S4 ^.PutBit (1,1);

 Writeln (S4 ^. Val_sim (80)); {Listing bit}

 Writeln (' Record "1" in 1 and 17 bits of a line ');

 Writeln (' 79 bits it is read out bits from a file ');

 if S3 ^. OpenBitFile ('aa.dat', btOpenRead) < > btOk Then Halt (1);

 D1: = 79;

 for nach: = 0 to D1-1 do

 begin

 S3 ^. ReadStr (1);

 write (S3 ^. GetBit (0))

 end;

 Writeln;

 nach: = 0;

 S3 ^. SeekStr (0);

 S3 ^. ReadStr (D1);

 repeat

 I: = S3 ^. Nomer (Nach, 3);

 Write (I:3);

 inc (nach, 3);

 until nach > D1 - 3;

 Writeln (*10*13) reading of bits from a file and write 8 kind ');

{ Clearing of the memory occupied in line S3!! To carry out necessarily}

 Dispose (S3, Done);

 {If you have overlooked to close a file it is closed automatically}

 Dispose (S4, Done);

 Dispose (S1, Done);

 Dispose (S2, Done);

end.

Listing results of performance of the program:

The test program for the module of processing of bit lines of the version 3.õ

Cyclic shift on one of bits to the left

001100000000000010000111000000001011111 111111111

011000000000000100001110000000010111111 111111110

Cyclic shift on 6 bits to the right

010111000000111111101101110001010010100 00

010000010111000000111111101101110001010 01 Record of this line in a file

Inversion c simultaneous truncation of length and removal(distance) of 2 first bits

 11111010001111110000000100100011101011 Record of this line in a file

Конкатенация last with previous 79 = 38+41:

111110100011111100000001001000111010110 100000101110000001111111011011100010100 1

Search of a combination of bits of a kind "1000" and finding positions

 6 15 26 39 49 69 65535

As the unpacked file of byte and see massive

111110100011111100000001001000111010110 100000101110000001111111011011100010100 1

Inversion by 3-rd and 14-rd bits of a line

111010100011110100000001001000111010110 100000101110000001111111011011100010100 1

012345678901234567890123456789012345678 901234567890123456789

111010100011110101000001001000111010110 100000101110000001111111011011100010100 1

Record "1" in 1 and 17-rd bits of a line

79 bits it is read out bytes from a file

010000010111000000111111101101110001010 011111101000111111000000010010001110101 1

 2 0 2 7 0 0 7 7 5 5 3 4 2 6 7 5 0 7 7 0 0 2 2 4 3 5

Repeated reading of a bit line from a file and transformation to 8 kind

Typical examples of use of library
Typical examples illustrate opportunities of organization processing bit sequences, but are not logically completed programs as do not check a correctness of task in initial data.
Statistics of occurrence of combinations
The subroutine (32 digit version) carries out consecutive splitting a bit sequence of a file into blocks on N bits and carries out calculation of statistics of occurrence of blocks.
Const MaxSize = 256;

Type MST = array [0. MaxSize] of integer;

procedure Statist (NameIs: String; N:integer; Var Mstat: MST);

var FIn: TBitFile; J: Longint;

begin
 FIn: = TBitFile. Create; {Allocation of memory}
 For J: = 0 to MaxSize do Mstat [J]: = 0;

FIn. OpenBitFile (NameIs, btOpenRead, bt8); {Opening file}

 while Fin. ReadStr (N) = btOk do inc (Mstat [Fin. Nomer (0, N)]);

 FIn. CloseBitFile; {Closing of processable files}

 FIn. Free; {Clearing memory}

end;
Auto synchronization descrembler
In the subroutine (32 digit version) algorithm the bit stream transformed synchronization tree-by-pass scremblerom is realized. Names of processable files and scremblera (Otv2, Otv1) are set as parameters, thus it is considered numbers taps polynom, that value Otv2 is more than value Otv1. The principle decoding consists in addition of three bit sequences signal, shifted the friend relativity the friend on number the bits, determined by taps polynom.
procedure DeskrSS (NameIs, NameRez: String; Otv1, Otv2: byte);
const DlinaBl = 8192;

var FIn, FOut: TBitFile;

 TekPoz: Longint;

begin
 FIn: = TBitFile. Create; {Allocation of memory}
 FOut: = TBitFile. Create; {Allocation of memory}

 TekPoz: = 0;

 Try

 FIn. OpenBitFile (NameIs, btOpenRead, bt8); {Opening of a file}

 FOut. OpenBitFile (NameRez, btCreate, bt8);

 while Fin. ReadStr (DlinaBl+Otv2) = btOk do

 begin

 FOut. Copy (FIn, Otv2, DlinaBl);

 FOut. Bool (Fin, btXOR);

 FIn. Delate (0, Otv2 - Otv1);

 FOut. Bool (Fin, btXOR);

 FOut. WriteStr;

 inc (TekPoz, DlinaBl); Fin. SeekStr (TekPoz);

 end;

 Exept on EfileBitError do ShowMessage (> the Mistake of processing _);

 end; {Except}

 FIn. CloseBitFile; {Closing of processable files}

 FOut. CloseBitFile;

 FIn. Free; FOut. Free; {Clearing of memory}

end;
Formation signal with time condensation of channels
The subroutine (16digit version) forms a signal appropriate to recommendation ITU R.101 (Period of cycle 47 bits, bit-by-bit condensation of the correspondents working as a start - stop code). The report of information simulating data transmission in the third time interval, is read out from a symbolical file c by name NameIs, storing the data in format ASCII.
procedure SigVu (NameIs, NameRez: String);
var Fin, FOut: PBitFile;

 Fpreob, FZnak: PStr_bit;

 Znak, J: Byte;

Begin
 FIn: = New (PbitFile, Init (8,1024)); {Allocation of memory}
 FOut: = New (PbitFile, Init (47,1024)); {Allocation of memory}

 FOut ^. OpenBitFile (NameRez, btCreate); {Opening of a file}

 FIn ^. OpenBitFile (NameIs, btOpenRead); {Opening of a file}

 {Initialization of structure of the period of transfer}

FOut Init_Sim (001010101010101010101011010101010101010 10101010 ');

 Fpreob: = New (PStr_bit, Init (11));

 Fznak: = New (PStr_bit, Init (8));

Fpreob Init_Sim (0xxxxxxxp11){Initialization start stop.}

 while Fin ^. ReadStr (8) = btOk do begin {To count an information mark}

 Fin ^. PutBit (8, bt0); {to null last category}

 Fin ^. PutBit (8, Fin ^. Kol_ed); {to add the category of parity}

 Fznak ^. Replace (Fin, 1); {To copy a mark in start}

 For J: = 0 to 10 do begin
 {To fill bits of a mark in a time interval on 11 cycles}

 FOut ^. PutBit (3, Fznak ^. GetBit (J));

 FOut ^. InvBit (0); {To generate synchronization "meander"}

 FOut ^. WriteStr; {To write down a cycle of transfer on a disk}

 End end;
 Fin ^. CloseBitFile; {Closing of processable files}
 Fout ^. CloseBitFile;

 Dispose (Fin, Done);

 Dispose (FOut, Done); {Clearing memory}

end;
The conclusion
On a diskette applied to the given grant initial codes of all described modules and programs typical examples, and also a number aditional programs intended for demonstration principles work modules of processing of bit lines contain. Purpose each files is described in files List_Dos.txt (DOS - coding) and List_Win.txt (Windows - coding). For correct understanding described methods of work with object-oriented modules processing bit lines it is desirable to study bases of object-oriented programming preliminary.
